News

A genome and gene catalog of glacier microbiomes

A genome and gene catalog of glacier microbiomes

[ad_1]

  • Zawierucha, K. & Shain, D. H. Disappearing Kilimanjaro snow—are we the last generation to explore equatorial glacier biodiversity? Ecol. Evol. 9, 8911–8918 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).

    Google Scholar 

  • Anesio, A. M., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3, 10 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stibal, M., Sabacka, M. & Zarsky, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774 (2012).

    CAS 

    Google Scholar 

  • Pittino, F. et al. Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability. Ann. Glaciol. 59, 1–9 (2018).

    Google Scholar 

  • Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Yarzábal, L. A., Salazar, L. M. B. & Batista-García, R. A. Climate change, melting cryosphere and frozen pathogens: should we worry…? Environ. Sustain. 4, 489–501 (2021).

    Google Scholar 

  • Knowlton, C., Veerapaneni, R., D’Elia, T. & Rogers, S. O. Microbial analyses of ancient ice core sections from greenland and antarctica. Biology 2, 206–232 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miteva, V. I. & Brenchley, J. E. Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl. Environ. Microbiol. 71, 7806–7818 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, L.-J., Rogers, S. O., Catranis, C. M. & Starmer, W. T. Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92, 286–295 (2000).

    Google Scholar 

  • Christner, B. C., Mosley-Thompson, E., Thompson, L. G. & Reeve, J. N. Bacterial recovery from ancient glacial ice. Environ. Microbiol. 5, 433–436 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Santibanez, P. A. et al. Prokaryotes in the WAIS Divide ice core reflect source and transport changes between Last Glacial Maximum and the early Holocene. Glob. Chang. Biol. 24, 2182–2197 (2018).

    PubMed 

    Google Scholar 

  • Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2, 663–667 (2012).

    Google Scholar 

  • Bibi, S. et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: a review. Int. J. Climatol. 38, e1–e17 (2018).

    Google Scholar 

  • Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    PubMed 

    Google Scholar 

  • Stibal, M. et al. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat. Ecol. Evol. 4, 686–687 (2020).

    PubMed 

    Google Scholar 

  • Souney, J. M. et al. Core handling, transportation and processing for the South Pole ice core (SPICEcore) project. Ann. Glaciol. 62, 118–130 (2021).

    Google Scholar 

  • Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mogrovejo-Arias, D. C., Brill, F. H. H. & Wagner, D. Potentially pathogenic bacteria isolated from diverse habitats in Spitsbergen, Svalbard. Environ. Earth Sci. 79, 109 (2020).

    Google Scholar 

  • Abedon, S. T. & Lejeune, J. T. Why bacteriophage encode exotoxins and other virulence factors. Evol. Bioinform. Online 1, 97–110 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Casacuberta, E. & Gonzalez, J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503–1517 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8, 47 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Royo-Llonch, M. et al. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. Nat. Microbiol. 6, 1561–1574 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    PubMed Central 

    Google Scholar 

  • Benaud, N. et al. Harnessing long-read amplicon sequencing to uncover NRPS and type I PKS gene sequence diversity in polar desert soils. FEMS Microbiol. Ecol. 95, fiz031 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2019).

    PubMed Central 

    Google Scholar 

  • Vila, E., Hornero-Méndez, D., Azziz, G., Lareo, C. & Saravia, V. Carotenoids from heterotrophic bacteria isolated from Fildes Peninsula, King George Island, Antarctica. Biotechnol. Rep. (Amst). 21, e00306 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moeller, R., Horneck, G., Facius, R. & Stackebrandt, E. Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol. Ecol. 51, 231–236 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Nupur, L. N. U. et al. ProCarDB: a database of bacterial carotenoids. BMC Microbiol. 16, 96–96 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anesio, A. M. & Laybourn-Parry, J. Glaciers and ice sheets as a biome. Trends Ecol. Evol. 27, 219–225 (2012).

    PubMed 

    Google Scholar 

  • Feller, G. Life at low temperatures: is disorder the driving force? Extremophiles 11, 211–216 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Houwenhuyse, S., Macke, E., Reyserhove, L., Bulteel, L. & Decaestecker, E. Back to the future in a petri dish: origin and impact of resurrected microbes in natural populations. Evol. Appl. 11, 29–41 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Nissen, J. N. et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat. Biotechnol. 39, 555–560 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalvari, I. et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46, D335–d342 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–w259 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–d361 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M. & Henrissat, B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 41 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, B., Zheng, D., Jin, Q., Chen, L. & Yang, J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47, D687–D692 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • de Nies, L. et al. PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome 9, 49 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–w87 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).

    PubMed 

    Google Scholar 

  • Tibetan Glacier Genome and Gene catalogue Raw sequence reads. Tibetan Glacier Genome and Gene catalogue. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB12327 (2022).

  • Share this post

    Similar Posts