News

Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage

Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage

[ad_1]

  • Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • MacLeod, D. T. et al. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol. Ther. 25, 949–961 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Philip, L. P. B. et al. Multiplex genome-edited T-cell manufacturing platform for ‘off-the-shelf’ adoptive T-cell immunotherapies. Cancer Res. 75, 3853–3864 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, 1–10 (2017).

    Article 

    Google Scholar 

  • Osborn, M. J. et al. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases. Mol. Ther. 24, 570–581 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

  • Braendstrup, P., Levine, B. L. & Ruella, M. The long road to the first FDA-approved gene therapy: chimeric antigen receptor T cells targeting CD19. Cytotherapy 22, 57–69 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schober, K. et al. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nat. Biomed. Eng. 3, 977–984 (2019).

    Article 

    Google Scholar 

  • Mansilla-Soto, J. et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat. Med. 28, 345–352 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Valton, J. et al. A multidrug-resistant engineered CAR T cell for allogeneic combination immunotherapy. Mol. Ther. 23, 1507–1518 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 7, 737 (2017).

  • Nahmad, A. D. et al. Engineered B cells expressing an anti-HIV antibody enable memory retention, isotype switching and clonal expansion. Nat. Commun. 17, 5851 (2020).

  • Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Enache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662–668 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lazzarotto, C. R. et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity. Nat. Biotechnol. 38, 1317–1327 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Adikusuma, F. et al. Large deletions induced by Cas9 cleavage. Nature 560, E8–E9 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Papathanasiou, S. et al. Whole chromosome loss and genomic instability in mouse embryos after CRISPR–Cas9 genome editing. Nat. Commun. 12, 5855 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alanis-lobato, G., Zohren, J., Mccarthy, A., Fogarty, N. M. E. & Kubikova, N. Frequent loss-of-heterozygosity in CRISPR–Cas9-edited early human embryos. Proc. Natl Acad. Sci. USA 118, e2004832117 (2021).

  • Weisheit, I. et al. Detection of deleterious on-target effects after HDR-mediated CRISPR editing. Cell Rep. 31, 107689 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boutin, J. et al. CRISPR–Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells. Nat. Commun. 12, 4922 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Przewrocka, J., Rowan, A., Rosenthal, R., Kanu, N. & Swanton, C. Unintended on-target chromosomal instability following CRISPR/Cas9 single gene targeting. Ann. Oncol. 31, 1270–1273 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zuccaro, M. V. et al. Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell 183, 1650–1664 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Urnov, F. D. CRISPR–Cas9 can cause chromothripsis. Nat. Genet. 53, 765–769 (2021).

    Article 
    CAS 

    Google Scholar 

  • Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1402 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Puig, M. et al. Determining the impact of uncharacterized inversions in the human genome by droplet digital PCR. Genome Res. 30, 724–735 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mourra, N. et al. High frequency of chromosome 14 deletion in early-onset colon cancer. Dis. Colon Rectum 50, 1881–1886 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Bandera, C. A. et al. Deletion mapping of two potential chromosome 14 tumor suppressor gene loci in ovarian carcinoma. Cancer Res. 57, 513–516 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Tabernero, M. D. et al. Characterization of chromosome 14 abnormalities by interphase in situ hybridization and comparative genomic hybridization in 124 meningiomas. Am. J. Clin. Pathol. 123, 744–751 (2005).

  • Lopez-Gines, C. et al. Association of chromosome 7, chromosome 10 and EGFR gene amplification in glioblastoma multiforme. Clin. Neuropathol. 24, 209–218 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Kamada, N. et al. Chromosome abnormalities in adult T-cell leukemia/lymphoma: a karyotype review committee report. Cancer Res. 52, 1481–1493 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Webber, B. R. et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222 (2019).

  • Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barzel, A. et al. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517, 360–364 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Porro, F. et al. Promoterless gene targeting without nucleases rescues lethality of a Crigler–Najjar syndrome mouse model. EMBO Mol. Med. 9, 1346–1355 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chandler, R. J. et al. Promoterless, nuclease- free genome editing confers a growth advantage for corrected hepatocytes in mice with methylmalonic acidemia. Hepatology 73, 2223–2237 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rutledge, S. D. et al. Selective advantage of trisomic human cells cultured in non-standard conditions. Sci Rep. 6, 22828 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sheltzer, J. M. et al. Single-chromosome gains commonly function as tumor suppressors. Cancer Cell 31, 240–255 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-cell data resource comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liberzon, A. et al. Molecular Signatures Database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, 1–8 (2014).

    Article 
    CAS 

    Google Scholar 

  • Share this post

    Similar Posts